Gravitational Phase Transition of Fermionic Matter in a General-relativistic Framework

LIVING SYSTEMS RESEARCH

Giuseppe Alberti^{1,2}, Pierre-Henri Chavanis²

¹Living Systems Research, Roseggerstraße 27/2, A-9020 Klagenfurt am Wörthersee, Austria
²Laboratoire de Physique Théorique (UMR 5152), IRSAMC, Université Paul Sabatier,
118 Route de Narbonne, F-31062 Toulouse, France

¹giuseppe.alberti@ilsr.at, ²chavanis@irsamc.ups-tlse.fr

ABSTRACT

The Thomas-Fermi model at finite temperature is extended to describe a system of self-gravitating massive fermions in a general-relativistic framework. It is shown that, in the canonical ensemble, when a nondegenerate fermionic gas is cooled below a critical temperature a condensed phase emerges, consisting of quasi-degenerate fermion stars. In the microcanonical ensemble, similarly, a condensed phase emerges when the energy of the system is below a critical value.

THEORETICAL FRAMEWORK

We consider a (static) fermionic gas, formed by N particles of mass m placed within a spherical box of dimension R. Here we neglect the contributions from other interactions. To study the nature of the phase transitions, we first solve the Tolman-Oppenheimer-Volkoff (TOV) system

$$\frac{d\Phi}{dr} = -\frac{2G}{c^4} \frac{(\Phi + 1)(M_r c^2 + 4\pi P r^3)}{r^2} \left(1 - \frac{2GM_r}{rc^2}\right)^{-1}$$

$$\frac{dM_r}{dr} = \frac{4\pi \epsilon r^2}{c^2}$$

(supplemented by the conditions $\Phi(0) = \Phi_0$ and $M_r(0) = 0$) for several values of Φ_0 (the central value of the gravitational potential). Then, for a given value of the baryon number

$$N = N(\Phi_0) = \int_0^R 4\pi n r^2 \left(1 - \frac{2GM_r}{rc^2}\right)^{-1/2} dr$$

we can plot the series of equilibria. We define the variables

$$\Lambda = -\frac{E_b R}{GN^2 m^2} = \frac{(Nm - M)Rc^2}{GN^2 m^2} , \qquad \eta = \frac{GNm^2}{k_B TR}$$

The occurrence of the phase transition depends on characteristic values of N and R (expressed in units of N_{OV} and R_{OV} , OV = Oppenheimer-Volkoff limit). R_{CCP} : Canonical Critical Radius; $R_{MCP} > R_{CCP}$: Microcanonical Critical Radius. N_{CCP} : Canonical Critical Point; $N_{MCP} > N_{CCP}$: Microcanonical Critical Point.

FORMATION OF STRUCTURES

Here we give two examples of astrophysical applications. The starting configurations are characterized by R and M. For the Dark Matter (DM) Fermions Balls we have used $m = 17.2 keV/c^2$.

Canonical Ensemble		
	Neutron Star	DM Fermions Ball
R	$2.73 \times 10^{2} \text{ km}$	$2.64 \times 10^{-2} \text{ pc}$
R_{CCP}	$3.60 \times 10^{1} \text{ km}$	$3.49 \times 10^{-3} \text{ pc}$
R_{cond}	$1.12 \times 10^{1} \text{ km}$	$1.08 \times 10^{-3} \text{ pc}$
M	$7.20 \times 10^{-1} M_{\odot}$	$2.10 \times 10^9 \ M_{\odot}$
M_{cond}	$6.79 \times 10^{-1} M_{\odot}$	$2.0293 \times 10^9 \ M_{\odot}$
$ T_t $	$4.79 \times 10^{10} \text{ K}$	$8.77 \times 10^5 \text{ K}$
$\mid \mid T_{cond} \mid \mid$	$1.64 \times 10^{10} \text{ K}$	$3.01 \times 10^5 \text{ K}$
$\parallel E_{gas} \parallel$	$-9.49 \times 10^{50} \text{ erg}$	$-2.83 \times 10^{60} \text{ erg}$
$ E_{min} $	$-4.05 \times 10^{52} \text{ erg}$	$-1.21 \times 10^{62} \text{ erg}$
t_D	$1.48 \times 10^{-2} \text{ s}$	1.40 yrs

Microcanonical Ensemble		
	Neutron Star	DM Fermions Ball
R	$4.88 \times 10^{3} \text{ km}$	$3.15 \times 10^2 \text{ pc}$
R_{MCP}	$4.35 \times 10^2 \text{ km}$	$2.81 \times 10^{1} \text{ pc}$
R_{cond}	$2.50 \times 10^{1} \text{ km}$	1.62 pc
M	$1~M_{\odot}$	$10 \ M_{\odot}$
M_{cond}	$2.20 \times 10^{-1} M_{\odot}$	$2.20~M_{\odot}$
T_{gas}	$1.63 \times 10^9 \text{ K}$	$1.49 \times 10^{-7} \text{ K}$
T_{cond}	$1.14 \times 10^{10} \text{ K}$	$1.05 \times 10^{-6} \text{ K}$
$ig E_{coll}$	$-1.81 \times 10^{50} \text{ erg}$	$-9.10 \times 10^{39} \text{ erg}$

$R = 15 R_{OV}$: Canonical Instabilities

Equilibrium phase diagrams for fermionic systems in GR. η_t is the temperature where the phase transition occurs. **Left**: At the temperature η_c the system evolves from the gaseous (black full line) to the condensed phase (green full line). The gravitational collapse is prevented by Pauli's exclusion principle. At the temperature η_* , the system evolves from the condensed phase to the gaseous one. The gravitational explosion is halted by the box. **Centre**: The condensed phase collapses towards a Black Hole at the temperature η'_c . **Right**: The transition phase is suppressed.

Free energy as a function of the normalized inverse temperature η . **Left**: The phase transition is identified by the intersection point between the gaseous (black solid line) and the condensed branch (green solid line). **Right**: The intersection point between the gaseous and the condensed phase is missing, so the phase transition is suppressed (the crossing point concerns unstable states).

$R = 179 R_{OV}$: Microcanonical Instabilities

Equilibrium phase diagrams for fermionic systems in GR. **Left**: A phase transition from the gaseous to the condensed phase occurs at the energy Λ_t . At the energy Λ_c the system evolves from the gaseous to the condensed phase. The gravitational collapse is prevented by quantum degeneracy. At the energy Λ_* the system evolves from the condensed to the gaseous phase. The gravitational explosion is halted by the box. At the energy Λ'_c the system collapses towards a Black Hole. **Right**: The phase transition is suppressed.

Entropy as a function of the normalized energy Λ . **Left**: The phase transition is identified by the intersection point between the gaseous (black solid line) and the condensed branch (green solid line). **Right**: The intersection point between the gaseous and the condensed phase is missing, so the phase transition is suppressed (the crossing point concerns unstable states).

